Intern kvalitetskontroll hvordan bør det gjøres?

Elvar Theodorsson

Quality management-, assurance- and control have their roots in the telephone industry

Western Electric Company

- 1905, Hawthorne Works, near to Chicago, employing 45 000 persons
- "Hawthorne effect" individuals modify their behaviour in response to their awareness of being observed
- Walter A. Shewhart

W. Edwards Deming

- Worked with Shewhart in the 1930:s at Western Electric
- Studied under Sir Ronald Fisher and Jerzy Neyman at University College, London in 1936
- Book: "Statistical Method from the Viewpoint of Quality Control", 1936
- Worked in Japan from 1947
- Deming orthogonal regression

 $Quality = \frac{Results of work efforts}{Total costs}$

Joseph M. Juran

- Western Electric, Hawthorn, 1924
- Focused on management for quality
- Worked in Japan from 1954
- Juran's "Quality Control Handbook" 1951
- Pareto principle "roughly 80% of the effects come from 20% of the causes"

Levey-Jennings control chart

 The distance from the mean is measured in standard deviations (SD)

Henry and Segalove control chart

• The relation to events, especially dates plotted on the X-axis

THE RUNNING OF STANDARDS IN CLINICAL CHEMISTRY AND THE USE OF THE CONTROL CHART

RICHARD J. HENRY AND MILTON SEGALOVE

From the Bio-Science Laboratories, Beverly Hills, California

(RECEIVED FOR PUBLICATION JANUARY 4, 1952)

Westgard, de Verdier, Groth, Aronsson

- Westgard JO, Groth T, Aronsson T, Falk H, de Verdier CH (1977) Performance characteristics of rules for internal quality control: probabilities for false rejection and error detection. Clin Chem 23: 1857–1867.
- Multirules
- Power function graphs

rig. 4. Responses of individual decision limit cusum control rules on a systematic shift equivalent to 1.0s (top part of ligure) and when no analytical errors are present (bottom part of figure) n Figures 4-9, the probability for rejection (p) is plotted vs. the number of control observations (N)

$$Z\text{-score} = \frac{x_i - \bar{x}}{SD_t}$$

Repeata bility

and

Reprodu cibility

$$CV\% = \frac{SD}{\bar{x}}$$

$$CV_t^2\% = CV_w^2\% + CV_b^2\%$$

w=repeatability imprecision

b=repreproducibility imprecision

$$SD_t = \frac{CV_t\% * \bar{x}}{100}$$

$$Z\text{-score} = \frac{x_i - \bar{x}}{SD_t}$$

Mean = 4.3 CWw = 1.5 CVb = 2

Mean = 4.5 CWw = 1.5 CVb = 2

Mean = 4.3 CWw = 1 CVb = 1

Technicon AutoAnalyzer II in the 1970'es

The SEAL AutoAnalyzer 3 HR is the most recent version of the original AutoAnalyzer II. It's designed specifically for industrial and environmental sample analysis

In practice 1(2)

- 1. Use the same stabilized control material for internal quality control for the same measurand for all measuring systems in the whole laboratory organization
 - Purchase at least a one year supply of the same lot number of the control material
- 2. The **imprecision** (repeatability + reproducibility) is usually stable as lot numbers change/re-calibrations are performed
- 3. Change of lot numbers/re-calibrations commonly make **change of expected mean value** mandatory.
 - Otherwise, statistical control rules (e.g. 1_{3S} 2_{2S} 10_X) give incorrect singnals.
 - Change of expected mean values for the same control material is not cheating

In practice 2(2)

- 4. Do not overcomplicate the use of control rules
 - 1_{3S} 2_{2S} 10_X may e.g. serve you well when intelligently used
- 5. Calculate the **total uncertainty** (repeatability variance + reproducibility variance) at least every month as far back as the same lot number of the internal quality control material was used
 - The total uncertainty will then include both the imprecision and the varying biases caused by the lot-number changes/re-calibrations
 - The total uncertainty is an appropriate measure of the measurement uncertainty component of the **diagnostic uncertainty** when using the measurand in question for clinical diagnosis

Reproducibility measurement uncertainty using natural patient samples

Norming results

Normed result =
$$\frac{\text{Adept-Mentor}}{\text{Mentor}} *100$$

Norming the results

The results from the adept instrument/method as a negative bias of about 1% compared to the mentor instrument. This bias varies with a standard deviation of 1.24%

Norming the results

Express each of the adept values as a percent of the corresponding mentor value.

"The results of the adept method in this case is about 1% lower than the measurements performed on the mentor instrument. This bias varies with a standard deviation of 1,24%

Tidsstämpel	Instrument	Adept	Mentor	Normerat värde
2002-07-01 12:00	925	163,0	165,0	98,79%
2002-07-09 09:40	925	96,0	97,6	98,36%
2002-07-15 07:30	925	101,0	102,0	99,02%
2002-07-24 10:00	925	94,0	96,0	97,92%
2002-07-29 09:40	925	130,0	128,0	101,56%
2002-08-09 10:00	925	133,0	131,0	101,53%
2002-08-15 09:29	925	155,0	154,0	100,65%
2002-08-21 10:09	925	134,0	135,0	99,26%
2002-08-30 10:30	925	119,0	119,0	100,00%
2002-09-02 12:49	925	102,0	102,0	100,00%
2002-09-09 11:10	925	122,0	122,0	100,00%
2002-09-16 07:59	925	150,0	153,0	98,04%
2002-09-23 10:50	925	128,0	128,0	100,00%
2002-10-02 09:00	925	83,0	84,6	98,11%
2002-10-08 10:00	925	136,0	139,0	97,84%
2002-10-15 09:35	925	143,0		
2002-10-21 10:02	925	143,0		98,62%
2002-10-28 10:30	925	122,0	125,0	97,60%
2002-11-04 11:39	925	134,0		
2002-11-12 14:35	925	113,0	114,0	99,12%
2002-11-19 08:50	925	158,0	160,0	98,75%
2002-11-25 10:20	925	142,0		
2002-12-02 10:50	925	104,0	108,0	96,30%
2002-12-09 11:10	925	148,0	150,0	98,67%
			Medelvärde	99,05%
			SD	1,24%

Variance component analysis

Investigating which of the following

- Measuring system
- Reagents
- Laboratory
- Operator
 Contributes most to the overall diagnostic uncertainty

Osbstacles to mentor-adept methods and to secondary adjustments

- Regulatory organizations including the EU (IVD) and the FDA
- Accreditation authorities
- Risks isolating the adept laboratories from the community of laboratories participating in regular external quality control/proficiency testing schemes

Important components of IQC

- Stabilized control materials
 - At least two levels
 - Enough for at least one year of use in the the entire laboratory organization
- Natural patient samples
 - Commutability
 - Trust
 - An appropriate IT system is needed
- Thourough knowledge of the statistical principles needed
- Single laboratory or all laboratories and measurement systems in the laboratory organization